

Distinguished Lecturer 2024-25 Season

Recommended Practice for Safe Well Positioning, Separation, and Surveying

Jonathan Lightfoot Oxy

Learn More

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

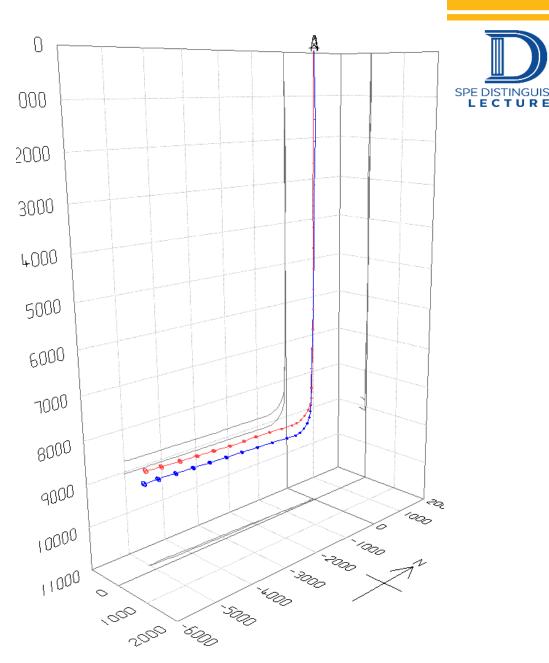
Additional support provided by AIME

Society of Petroleum Engineers

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Recommended Practice for Safe Well Positioning, Separation, and Surveying

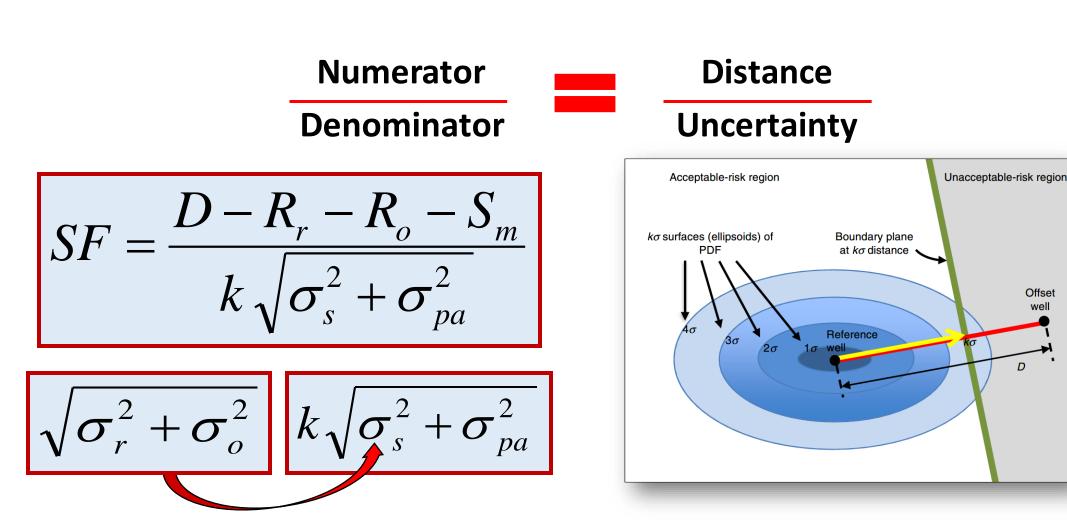
Jonathan Dale Lightfoot


Society of Petroleum Engineers

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

3

Presentation Outline


- Safe Separation
- Applications
- Industry Collaboration
- Management Principles
- Position Uncertainty Models (PUMs)
- Offset Well Environment
- Case Studies
 - Offset Operator Close Approach
 - Lateral Undulations
 - Key Performance Indicators
 - Steerable Motor Curve
 - Lateral Tortuosity
- Key Takeaways

WPTS Separation Rule Illustration (SPE-187073-PA)

5

Safe Separation The Wellbore Positioning Technical Section (WPTS) Rule Separation Factor = Ratio of Separation Distance and Uncertainty

Applications

Serves as the primary technical reference for proven engineering practice in the broad wellbore construction application of:

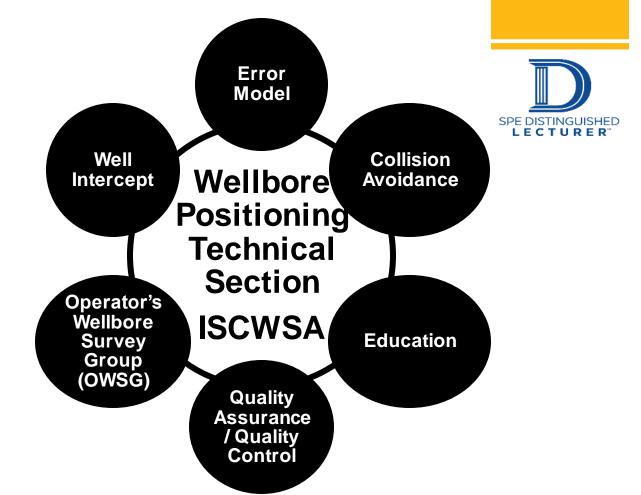
- Oil and Gas
- Geothermal
- Carbon Sequestration
- Coalbed Methane (CBM)
- Horizontal Directional Drilling (HDD), trenchless boring
- Mineral Ventilation and Extraction
- Scientific Coring
- All other subsurface borehole construction applications

Industry Collaboration

Industry Steering Committee on Wellbore Survey Accuracy

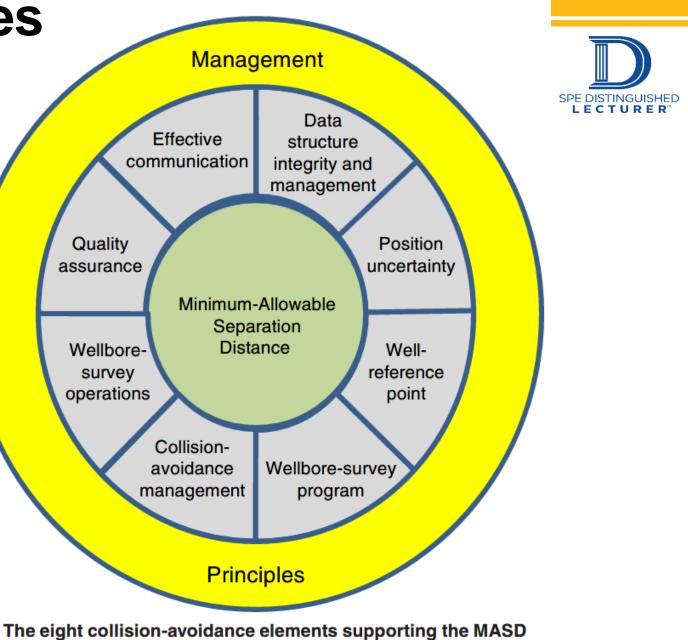
- Produces, maintains, and publishes standards for the industry
- Promotes a collaborative understanding of issues associated with wellbore surveying
- Formed in 1999, ISCWSA has been around for 29 Years [SPE 67616-PA]
- 57 General Meetings

SPE Wellbore Positioning Technical Section (WPTS)



Industry Collaboration

WPTS has Six (6) Primary Sub-Committees


- 1. Collision Avoidance
- 2. Error Model Maintenance
- 3. Well Intercept
- 4. Operator's Wellbore Survey Group
- 5. Quality Assurance / Quality Control
- 6. Education

Management Principles

- Minimum Allowable Separation Distance (MASD)
- Maintain a Safe Separation Distance Between Wells Being Drilled and Subsurface Hazards
- 8 Core MASD Elements

MASD Management Principles (SPE-187073-PA)

Allowable Deviation from Plan for SF=1

Any given SF value represents a specific probability of the reference well crossing the offset well. The distance D at which a particular SF value occurs is situation specific. For any point on a reference well, the critical value SF = 1 defines a minimum allowable separation distance (MASD) from the specified offset well along D:

$$SF = \frac{D - R_r - R_o - S_m}{k\sqrt{\sigma_s^2 + \sigma_{pa}^2}} \qquad SF = \frac{D - R_r - R_o - 0.3}{3.5\sqrt{\sigma_s^2 + 0.25}}$$

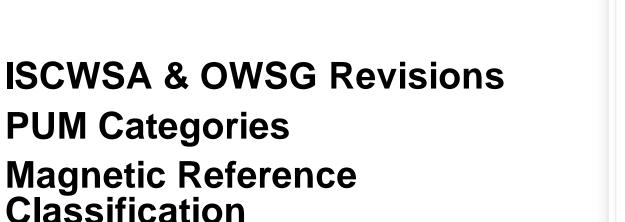
$$D_{MASD} = k\sqrt{\sigma_s^2 + \sigma_{pa}^2} + R_r + R_o + S_m$$

Allowable Deviation from Plan for SF=1

$$D_{MASD} = k \sqrt{\sigma_s^2 + \sigma_{pa}^2 + R_r + R_o} + S_m$$

If the distance D falls below D_{MASD} , then SF < 1. The difference between the planned distance D_{plan} and the D_{MASD} is the allowable deviation from the plan D_{ADP} :

$$D_{ADP} = D_{plan} - D_{MASD}$$


SPE-187073-MS

Well Collision Avoidance - Separation Rule

S.J.Sawaryn, Consultant, H. Wilson, Baker Hughes a GE Company, J. Bang, Gyrodata Inc., E. Nyrnes, Statoil ASA, A. Sentance, Dynamic Graphics Inc., B. Poedjono and R. Lowdon, Schlumberger, I. Mitchell and J. Codling, Halliburton, P.J. Clark, Chevron Energy Technology, W.T. Allen, BP

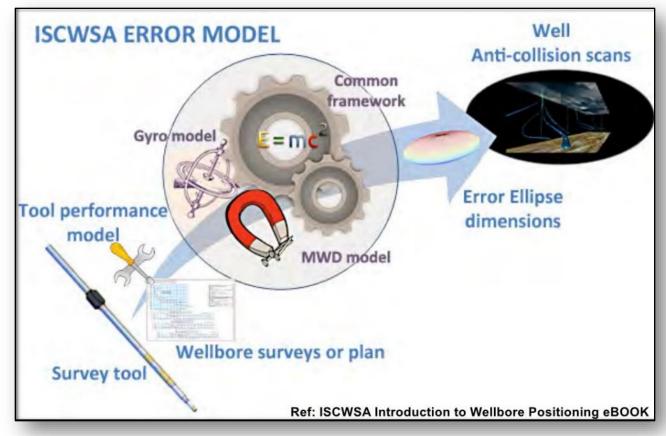
MASD Management Principles (SPE-187073-PA)

Position Uncertainty Models (PUM)

Generic Models (Set A & B) PUM Example – MWD + SRGM MWD Corrections Definition of the ISCWSA Error Model

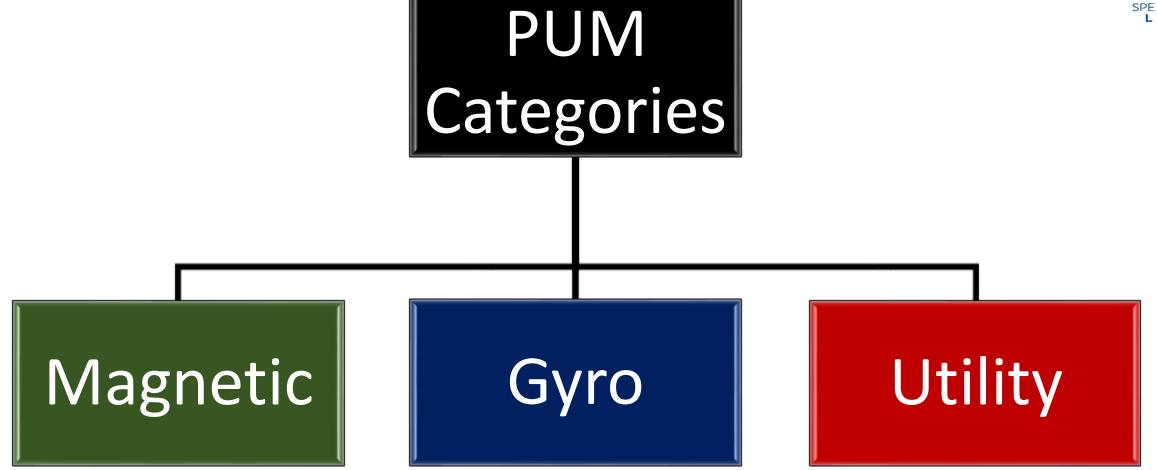
ICCIIICO

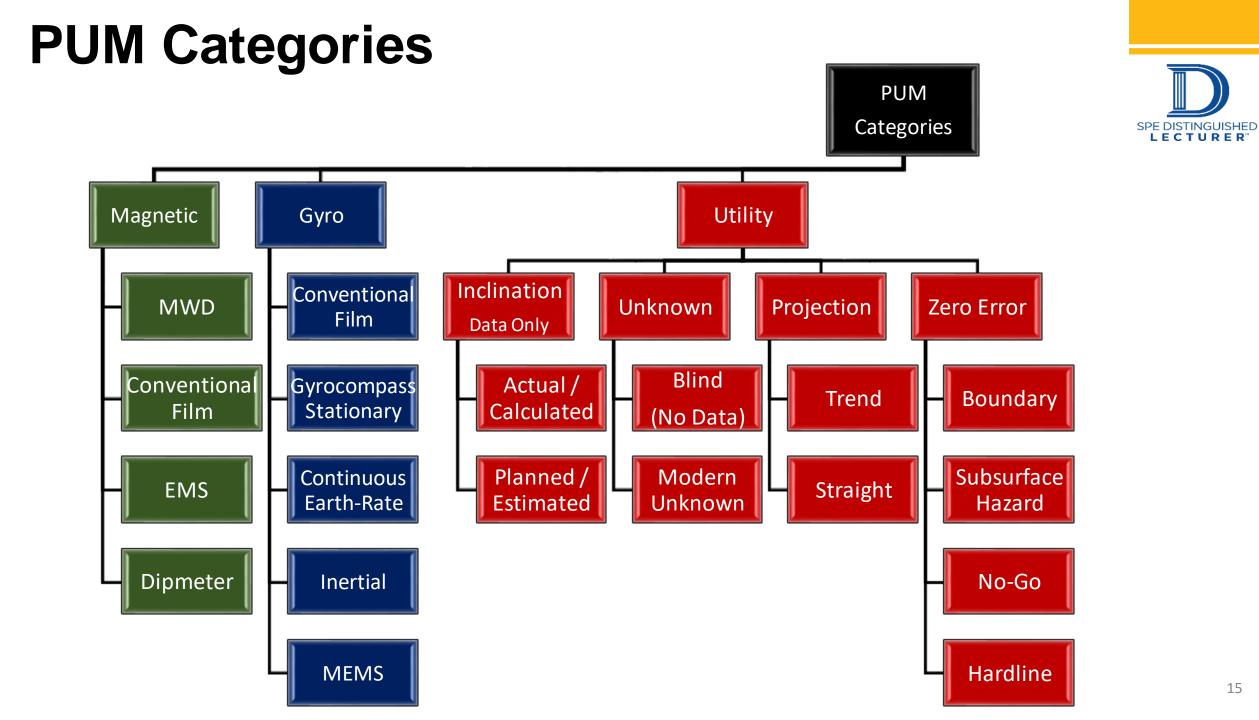
Revision 5.13 January 2023



PUM Sets – Established by OWSG

- PUM, often referred to as Error Models or Instrument Performance Models, Revision 5.13 (Current)
- Set A: Standard
- Set B: Extended
- Set C: Vendor-supplied
- Set D: Gyro software validation
- Set E: Prototypes in development


Grindrod, S. J., Clark, P. J., Lightfoot, J. D., Bergstrom, N.. , and L. S. Grant. "**OWSG Standard Survey Tool Error Model Set for Improved Quality and Implementation in Directional Survey Management**." Paper presented at the IADC/SPE Drilling Conference and Exhibition, Fort Worth, Texas, USA, March 2016. doi: <u>https://doi.org/10.2118/178843-MS</u>



PUM Primary Categories

Position Uncertainty Models (PUM)

Revision	Revision Date Description		SPE DISTINGU L E C T U R						
Rev 0	Dec 2000	As per SPE 67616 together with various typographical corrections [1]							
Rev 1	March 2005	Changed to the gyro style misalignment with 4 terms and calculation options [2]							
Rev 2	Feb 2007	Changes to the parameter values for the depth scale and stretch terms [2]							
Rev 3	Rev 3 Oct 2009 Replacement of all toolface dependent terms								
Rev 4 & OWSG Rev 2	Mar 2019	Introduction of AMIL term and changes to misalignment magnitudes. Random magnetic reference values introduced to the main MWD model. OWSG includes Conventional, Gyro and Utility PUMs. Included Low Resolution and High Resolution Magnetic Reference Models for MWD and EMS. [3]	Definition of the ISCWSA Error Model						
Rev 5	Oct 2020	Introduction of the XCL term, changes to misalignments and sag, breakout of magnetic reference terms and clarification of the surface tie-on. [4]	Revision 5.13 January 2023						
Rev 5.13	Rev 5.13 Jan 2023 Minor updates to Rev 5 [4] – Latest Revision								
		3-MS	Definition of 1004/3 Entry Model Rev.1.13						

4. https://www.iscwsa.net/media/files/files/64bd61c2/definition-of-iscwsa-error-model-v5-13.pdf

Magnetic Reference PUM Classification

Category Abbreviati on		Example Geomagnetic Models	Wavelen 40,000 km		Update Frequency
Low Resolution	LRGM	GRF, WMM, CGRF	≤ 400	≤ 4000 km	
Standard Resolution	SRGM	MVSD, Pre-BGGM2019	≤ 300	≤ 300 km	
High Resolution	HRGM	HDGM, MVHD, BGGM2019+, HDGM-RT	≤ 55 km		Annual
In-Field Referencing	IFR1	IFR, IFR1, Ground shot plus secular variation correction	≤ 2 km		Annual
In-Field Referencing with Realtime Disturbance Field Correction	IFR2	IFR2, IIFR	≤ 2 km p realtime samp	(≤ 1 min)	Annual
				Multiplier	Category
				1.21	LRGM
				1.00	SRGM
				0.82	HRGM

PUM Toolcodes Rev 5-1

A default set of conservative PUM tool-codes for use when tool specific models are not available.

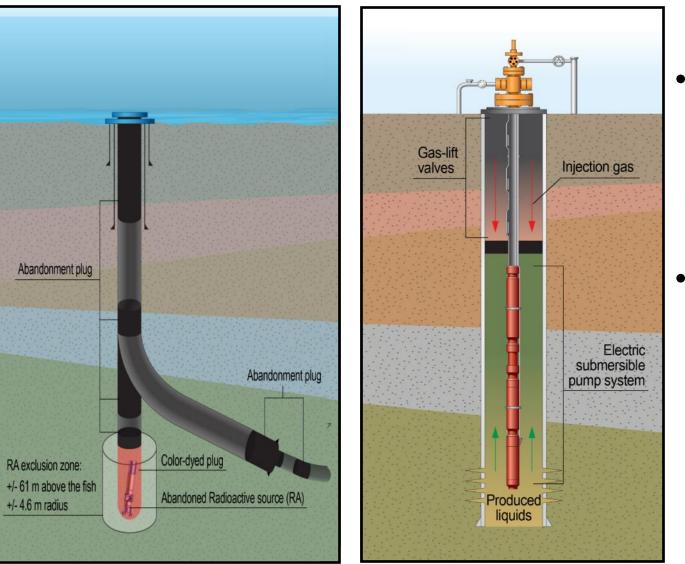
- ISCWSA Generic Toolcodes SetA Rev5-1 (updated Sept 23, 2022)
- ISCWSA Generic Toolcodes SetB Rev5-1 (updated Sept 23, 2022)
- Header / Reference Info
- Weighting Functions
- Technical Reference / Source
- Code & Term Description
- Type, Magnitude & Units
- Correlation Coefficients & Comments
- Formulas (Inclination & Azimuth)

Ŧ	OWSG Prefix 💌	Short	Name		Long Name		ज				
1	A001Mc	MWD)+SRGM		OWSG MWD+SRGM	D+SRGM					
з	A002Mc	MWD	+SRGM+SAG		OWSG MWD + SRGM + Sa	OWSG MWD + SRGM + Sag Correction					
5	A003Mc	MWD)+SRGM+AX		OWSG MWD + SRGM + A	xia	al Correction				
7	A004Mc	MWD	+SRGM+AX+SAG		OWSG MWD + SRGM + A	xia	al Correction + Sag Correction				
9	A005Mc	MWD)+IFR1		OWSG MWD + IFR1						
11	A006Mc	MWD)+IFR1+AX		OWSG MWD + IFR1 + Axi	al	Corr				
13	A007Mc	MWD	+IFR1+AX+SAG	_	OWSG MWD + IFR1 + Axi	OWSG MWD + IFR1 + Axial Corr + Sag Correction					
15	A008Mc	-	OWSG Prefix	Ŧ	Short Name	<u> </u>	Long Name	.			
	A009Mc	1	B001Mc		MWD+HRGM		OWSG MWD + HRGM				
	A010Mc	3	B002Mc		MWD+HRGM+AX		OWSG MWD + HRGM + Axial Correction				
	A011Mc	5	B003Mc		MWD+HRGM+AX+SAG		OWSG MWD + HRGM + Axial Correction + Sag Correction				
	A012Mc	7	B004Mc		MWD+HRGM+SAG						
	A013Mc A014Mc	9	B005Mc		MWD+HRGM+SAG+MS		OWSG MWD + HRGM + Sag + Multi-Station Correction				
	A015Mc	-	B006Mc		MWD+LRGM		OWSG MWD + LRGM				
	A016Mc		B007Mc		MWD+LRGM+AX		OWSG MWD + LRGM + Axial Correction				
	A017Mc										
35	A018Mb		B008Mc		MWD+LRGM+AX+SAG	A	OWSG MWD + LRGM + Axial Correction + Sag Correction				
37	A019Gb	17	B009Mc		MWD+LRGM+SAG		QW <u>IG1</u> WD+LRG Line ag Correction				
39	A020Gb	19	B010Mc		EMS+IFR1+AX+SAG		WSG EMS HFR1 + toral Corr + Sag Correction				
41	A021Gc	21	B011Mc		EMS+IFR1+SAG		OWSG EMS + IFR1 + Sag Correction				
43	A022Gb	23	B012Mc		EMS+IFR1+SHE+MS		OWSG EMS + IFR1 + Seg + Multi-Station Correction				
45	A023Gb	25	B013Mc		EMS+HRGM	Γ					
47	A024Mb	27	B014Mc		EMS+HRGM+AX	4	OWSG EMS + HRGM + Axial Correction				
49	A025Mb	29	B015Mc		EMS+HRGM+AX+SAG		OWSG EMS + HRGM + Axial Correction + Sag Correction				
51	A026Ua	31	B016Mc		EMS+HRGM+SAG		OWSG EMS + HRGM + Sag Correction				
53	А027Ub		B017Mc		EMS+LRGM		OWSG EMS + LRGM				
	A028Ub		B017MC B018Md		EMS+LRGM+AX		OWSG EMS + LRGM + Axial Correction				
	A029Ub										
59	A030Ua		B019Md		EMS+LRGM+AX+SAG		OWSG EMS + LRGM + Axial Correction + Sag Correction				
		39	B020Mc		EMS+LRGM+SAG		OWSG EMS + LRGM + Sag Correction				
		41	B021Ga		FINDS		OWSG BHI Ferranti FINDS				
n	1	42	B022Ua		BLIND+TREND		OWSG BLIND+TREND				

20

Example: A001Mc MWD+SRGM

https://www.iscwsa.net/error-model-documentation/ ISCWSA_Generic_Toolcodes_SetA_Rev5-1 (updated 23/9/22) Excel Workbook Tab: MWD+SRGM

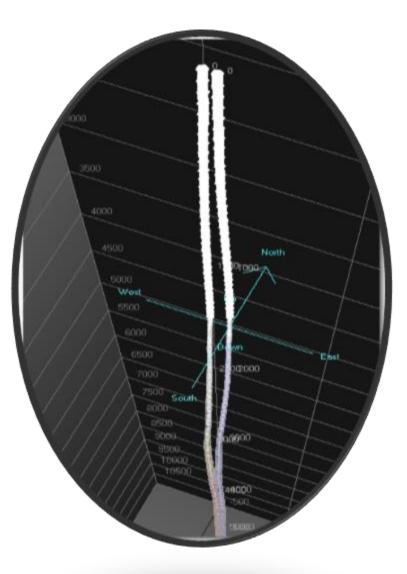

01Me	MVD+SRGM												
011-10													
'SG Prefix:	A001Mc	No Code	Term Description	¥t.Fn.	¥t.Fn. Source	Туре	Magnitude Un	nits Pr	rop. P1	P2P3 ¥t.Fn. Comment	Depth Fo	rm Inclination Formula	Azimuth Formula
ort Name:	MWD-SRGM	1 DRFR	Depth: Depth Reference - Random	DREF	SPE 67616	Depth	0.35 r	m f	R 0	0 0	1	0	0
Name:	OVSG MVD+SRGM	2 DSFS	Depth: Depth Scale Factor - Systematic	DSF	SPE 67616	Depth	0.00056	- 3	S 1	0 0	MD	0	0
ision No:	5.1	3 DSTG	Depth: Depth Stretch - Global	DST	SPE 67616	Depth	0.00000025 1/	lm (G 1	1 1	MD*TVD	0	0
ision Date:	8-Oct-20	4 ABXY-TI	MWD TF Ind: X and Y Accelerometer Bias	ABXY-T	SPE 63275 + Andy Broo	Sensor	0.004 m	ls2	S 1	0 0	0	-Cos(Inc) / Gfield	(Tan(Dip) * Cos(Inc) * Sin(AzM)) / Gfield
	Reading changed to match ISCWSA Modelin (Rev.5), XCLA & XCLH terms added, XYM3												
	relief buildings. XVAH anglaced by IE, SAG anglaced by GAGE, DECG replaced by IF (2014) (SAG anglaced by IF (2014) (SAG anglaced by IF (2014))												
sion Comment:		5 ABXY-TI	2 MWD TF Ind: X and Y Accelerometer Bias	ABXY-T	SPE 63275 + Andy Broo	Sensor	0.004 m	is2	S 1	0 0 Singularity when vertical	0	0	((Tan((pi / 2) - Inc)) - Tan(Dip) * Cos(AzM)) / Gfield
ce:	Owact - Shipperfold and wood to	6 ABZ	MWD: Z-Accelerometer Bias		SPE 67616 Table 1	Sensor	0.004 m		S 1		0	-Sin(Inc) / Gfield	Tan(Dip) * Sin(Inc) * Sin(AzM) / Grield
	MWD using 1-Year Standard Resolution Geomagnetic Mode (e.g. BGGM up to 2018, MVSD)			_									
cation:	with no additional corrections		S MWD TF Ind: X ar	19	SPE 63275	Sensor	0.0005	- 3	S 1	0 0		Sin(Inc) * Cos(Inc) / Sqr(2	(-Tan(Dip) * Sin(Inc) * Cos(Inc) * Sin(AzM)) / Sqr(2)
Type:	Mag		2 MWD TF Ind: X an poel ete e Fac		SPE 63275 SPE 63275 + Ano,	Sen	905						(Dip os(Inc) * Sin(AzM)) / 2
	eterence		MWD TF Ind: X ar	` 🔺	SPE 63275 + Ano,	en	5		1	0			(1 p) nc, s(AzM) - Cos(Inc)) / 2
ked:		10 ASZ	MWD: Z-Accelero	۶Z	SPE 67616	en	45						(In h(AzM)
oved:		11 MBXY-TI	1 MWD TF Ind: X and T Magnetometer Blas	MBX1-	SPE 63275 + Anagono	5 Sen	70 7	11 ·	5 1				-cos(Inc) - sin(AzIvi) r (BFier - Cos(Dip))
8	Based on ISCWSA MWD Rev 3 (Tool Face Independent - Sliding)	12 MBXY-TI	2 MWD TF Ind: X and Y Magnetometer Bias	MBXY-1	SPE 63275 + Andy Broo	Sen a	70 n	nT :	S 1	0 0	0	0	Cos(AzM) / (BField * Cos(Lp))
ion History:	Rev 0.105-Jun-2013 Draft Release for Comment.	13 MBZ	MWD: Z-Magnetometer Bias	MBZ	SPE 67616 Table 1	Sensor	70 n	nT 🔅	S 1	0 0	0	0	-Sin(Inc) * Sin(AzM) / (BField * Cos(Dip))
		14 M TI	TF Use and Y Magnetome sale Factor	MSXY-T	SPE 632 ndy Broo	o Sensor	0.0016	- 3	s		0	0	Sin(Inc) * Sin(AzM) * (Tan(Dip) * Cos(Inc)
	ev 8 ,201 C A 1777 et AL c an t A	15 M3	F and Whitneetometry Coale Easter	HIGXY-	632 <mark>75 A</mark> nde Deeg	nos en cor	00010	- 1	s				Cip(4-14)* (Tap(Di-24 Cip(Inc) * Cos(Inc)
i/i ac iy:		16 MS	A A A A A A A A A A A A A A A A A A A	- Y	- 05 2' nd		-	- 1	s				22 Ct 240-cos(AzM) - Cos (AzM)
ation Range Min:	0 deg	17 MS2	WD ne er soare f a		676 de	S r	9.0	- 1	s		0		in(Costerney (Dip) * Cos
ation Range Max:	180 deg	18 DEC-	/IWD Nation ed E		6	A		leg 1	V .				Sin(Inc) * Sin(AzV)* (Tan(Dip) * Cos(Inc) Cos(Inc) * Sin(AzV)* (Tan(Dip) * Cos(Inc) Cos(Inc) * Cos(Inc) * Cos(Inc) Cos(Inc) * Cos(Inc) * Cos(Inc) in(Inc) Cos(Inc) * Cos(Inc) in(Inc) Cos(Inc) * Cos(Inc) Cos(Inc) * Cos(Inc) * Cos(Inc) Cos(Inc) * Cos(Inc) * Co
East/West Exclusion:	0 deg	19 DEC-OS	MWD: Declination Crustal Omission Error	AZ	SPE 67616	AziRef	d	leg (G 1	1 1	0	0	1
je Comment:	None	20 DEC-OH	MWD: Declination Crustal Omission HD Models	AZ	SPE 67616	AziRef	0.21 d	leg (G 1	1 1	0	0	1
Parameters		21 DEC-01	MWD: Declination Crustal Omission IFR Models	07	SPE 67616	≜ziRef	0.05 d	leg (G 1	1 1	0	0	1
lignment Alt:	3	22 DECR	MWD: Declination - Random		PE 67616	ziRef	0.1 d	leg f	R 0	0		0	1
ignment Min Course Len	gtt 10 m	23 DBH-U	MWD: BH Dependent Declination Uncorrelated Errors	овн 🦳	SPE	ziF	50	т	1			ons	17 (BField * Cos(Dip))
Fortuosity:	1 deg / 100 ft	24 DBH-OS	MWD: BH Dependent Declination Crustal Omission Standard	рвн	SPE	zil	3359	т	1	1			17 (BField * Cos(Dip))
		25 DBH-OH	MWD: BH Dependent Declination Crustal Omission HD Models	· ·	AR C	ziFi	40	•	1				17 (BField * Cos(Dip))
		26 DBH-01	MWD: BH Dependent Declination Crustal Omission IFR Models	DBH	SPE 67616	AziRef	356 deg	g.nT (G 1	1 1	0	0	17 (BField * Cos(Dip))
		27 DBHR	MWD: BH-Dependent Declination - Random	DBH	SPE 67616	AziRef	3000 deg	g.nT f	R 0	0 0	0	0	1/(BField*Cos(Dip))
		28 AMIL	MWD: Axial Interference - SinI.SinA	AMIL	Halliburton	Mgntos	220 n	nT :	S 1	0 0	0	0	Sin(Inc) * Sin(AzM) / (BField * Cos(Dip))
		29 SAGE	MWD: Sag	SAGE	ISCVSA	Align	0.2 d	leg :	S 1	0 0	0	(Sin(Inc))^0.25	0
		30 XYM1	Misalignment: XY Misalignment 1	XYM1	SPE 90408 Table 9 - Alt	t. Align	0.1 d	leg :	S 1	0 0	0	Abs(Sin(Inc))	0
		31 XYM2	Misalignment: XY Misalignment 2	XYM2	SPE 90408 Table 9 - Alt	t. Align	0.1 d	leg :	S 1	0 0	0	0	4
		32 XYM3E	Misalignment: XY Misalignment 3	XYM3E	ISCWSA	Align	0.3 d	-	R 0	0 0 Singularity when vertical	0	Cos(Inc) * Cos(AzT) * Max(1, sqrt(10/(ME	D-MDPre (Cos(Inc) * Sin(AzT) / Sin(Inc)) * Max(1, sqrt(10/(MD-MD
		33 XYM4E	Misalignment: XY Misalignment 4	XYM4E	ISCVSA	Align	0.3 d	leg l		0 0 Singularity when vertical	0		MDPrev (Cos(Inc) * Cos(AzT) / Sin(Inc)) * Max(1, sqrt(10/(MD-M
		34 XCLA	Depth: Long Course Length XCL - Azimuth	XCLA	SPE 187249 Jerry Codli		0.167	-		0 0 Tangential Calculation. Si	ngi O	0	Max(Sin(Abs(AzT-AzPrev)), XCLTortuosity* (MD-MD
			Depth: Long Course Length XCL - Inclination		SPE 187249 Jerru Codli					0 0 Tangential Calculation. Fo	-	Max(Abs(Inc-IncPrev), XCLTortuositu" (I	

MWD PUM Survey Corrections

- Axial (AX)
- Sag
- Multi-Station Analysis (MSA or MS)
- Axial + Sag
- Multi-Station + Sag
- Depth Corrections
- Advanced MWD Corrections
 - Ground Shot (GS) IFR
 - Advanced Multi-Station (AMSA)
 - All BHA's for a Wellbore
 - All BHA's for all wellbores on a well (Includes Sidetracks / By-Pass Wellbores)
 - All BHA's for all wellbores on a Site/Location/Pad

Offset Well Environment

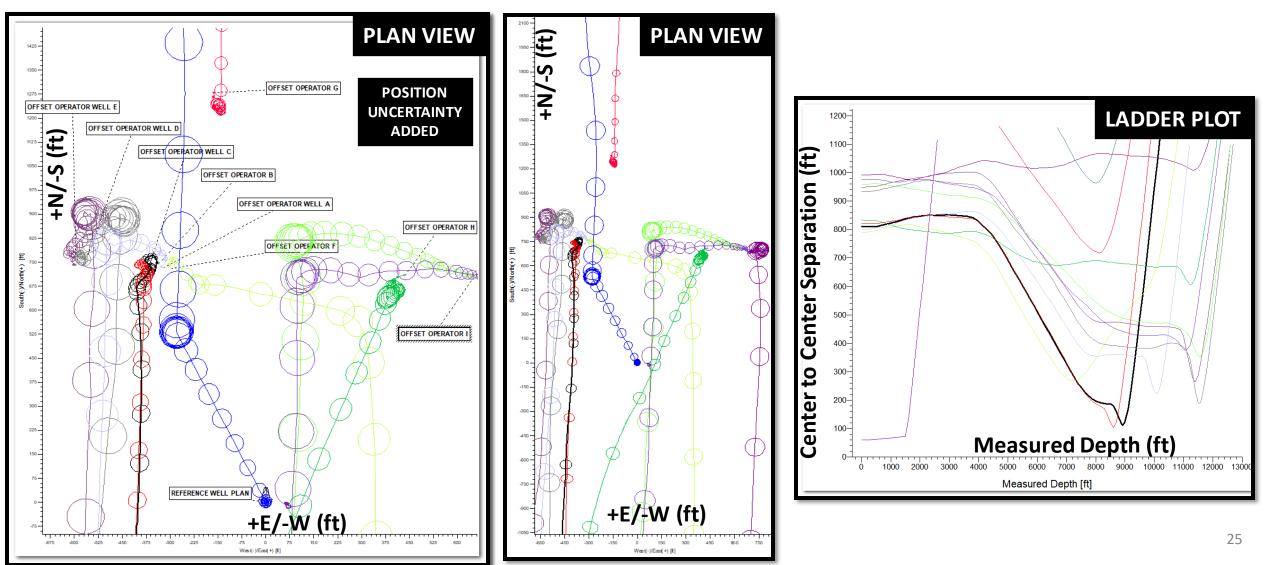
MASD Management Principles (SPE-187073-PA)

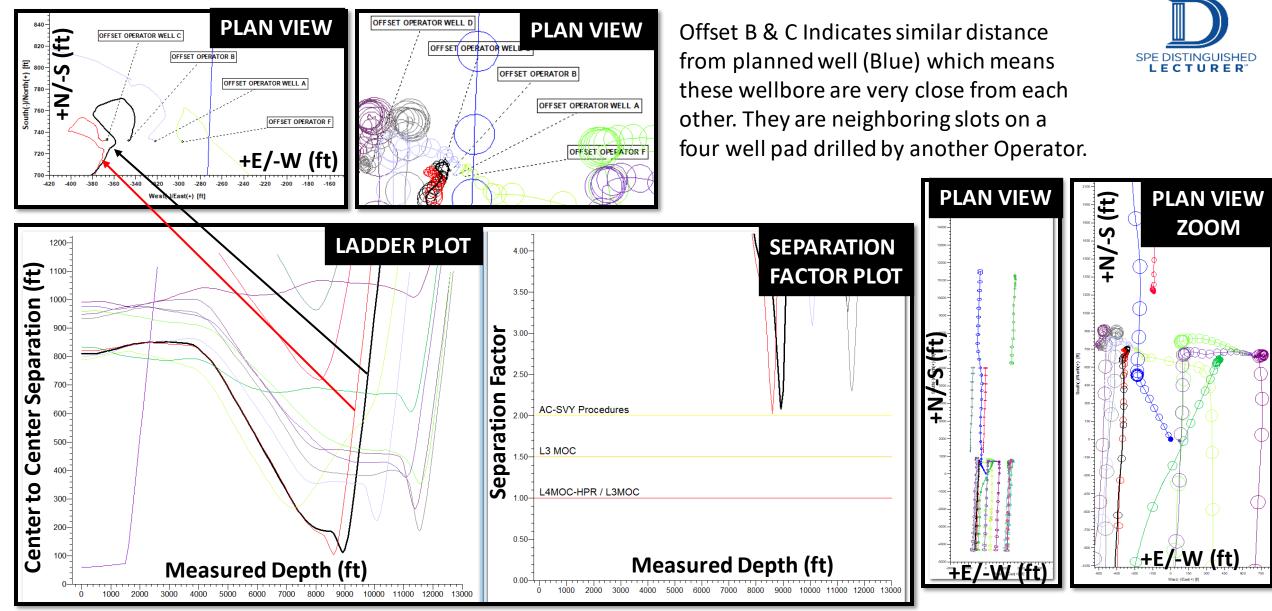


Offset Well Environment

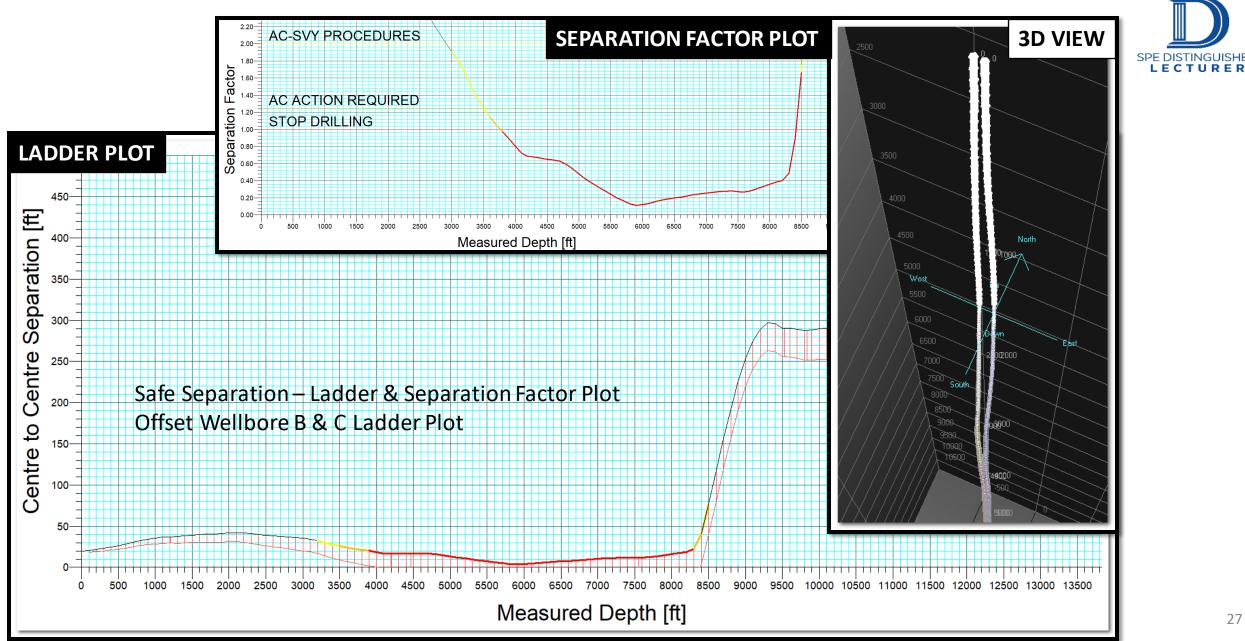
- Status
- Completion Type
- Wellbore Fluids
- Lifting Mechanism
- Artificial Lift
 - Rod Pump
 - Progressive Cavity
 - Hydraulic Pump
 - Gas Lift (GL)
 - Electric Submersible Pump (ESP)
 - Hybrid Lift System
 - GL & ESP
 - ESP & Natural Flow

Case Study


Offset Operator Close Approach



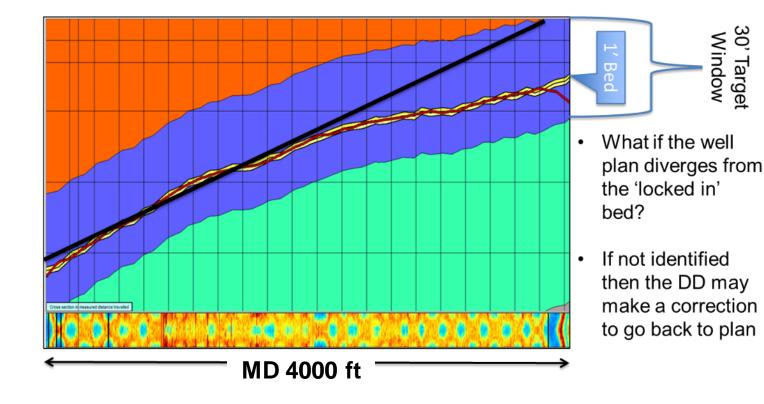
Safe Separation Plots – Ladder & Separation Factor

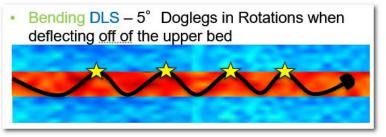


Safe Separation Plots – Ladder & Separation Factor

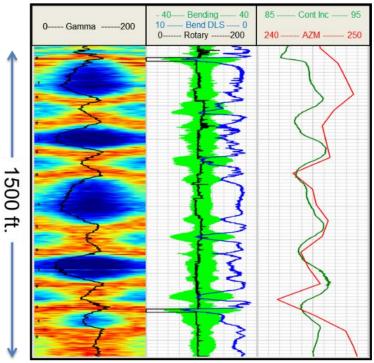
Safe Separation Plots – Ladder & Separation Factor

Case Study

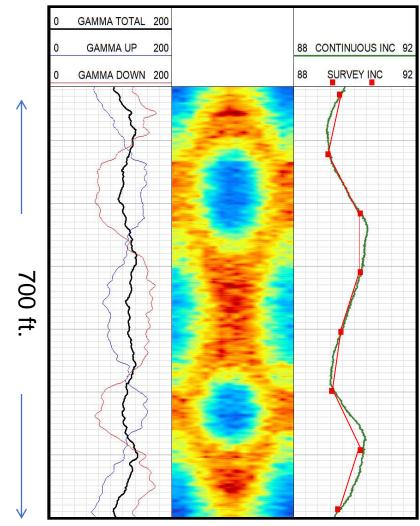

Lateral Undulations Key Performance Indicators Steerable Motor Curve Lateral Tortuosity



Lateral Undulation Period - TVD Accuracy

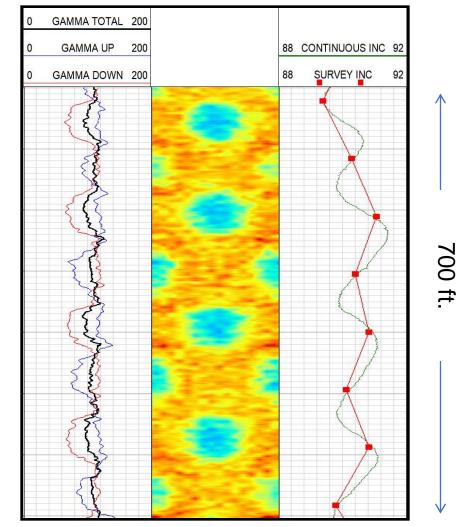


Viens, Christopher, Clark, Tyler, Lightfoot, Jonathan, and Carlos Mercado. "**Real-Time Downhole Data Resolves Lithology Related Drilling Behavior."** Paper presented at the IADC/SPE Drilling Conference and Exhibition, Fort Worth, Texas, USA, March 2018. doi: <u>https://doi.org/10.2118/189697-MS</u>



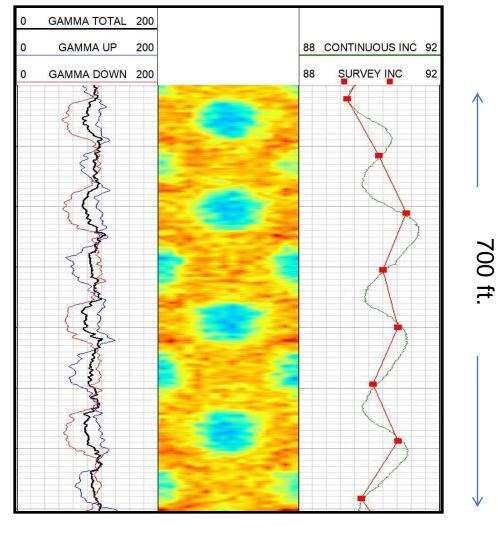
Pad 3 Well A

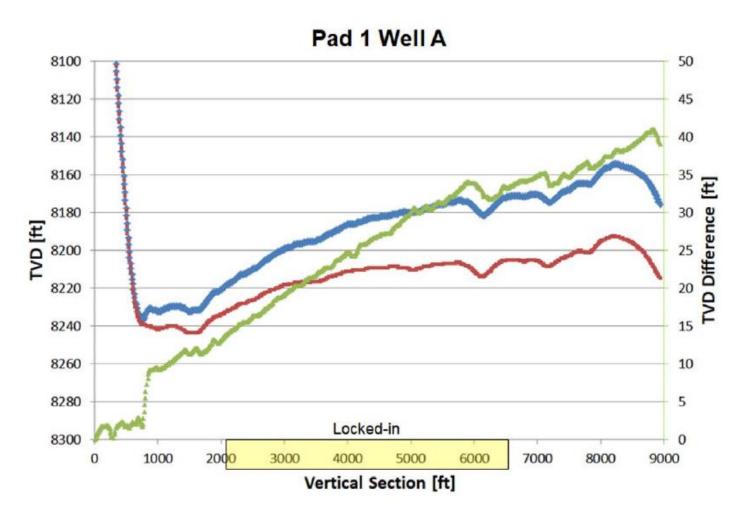
Lateral Undulation Period - TVD Accuracy


Pad 2 Well A

Left: 90' surveys adequate to due large period of oscillation

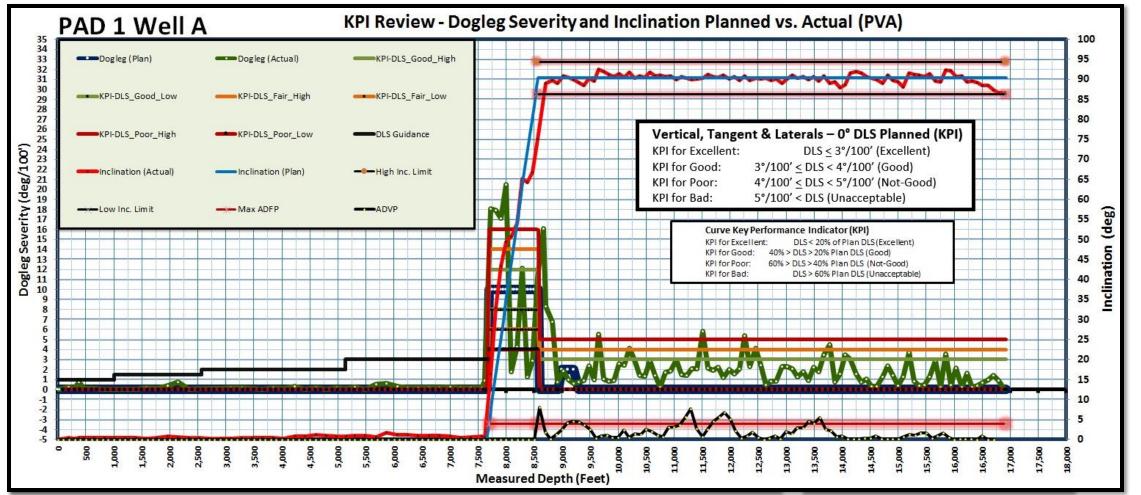
Right: 90' surveys inadequate to short oscillation period



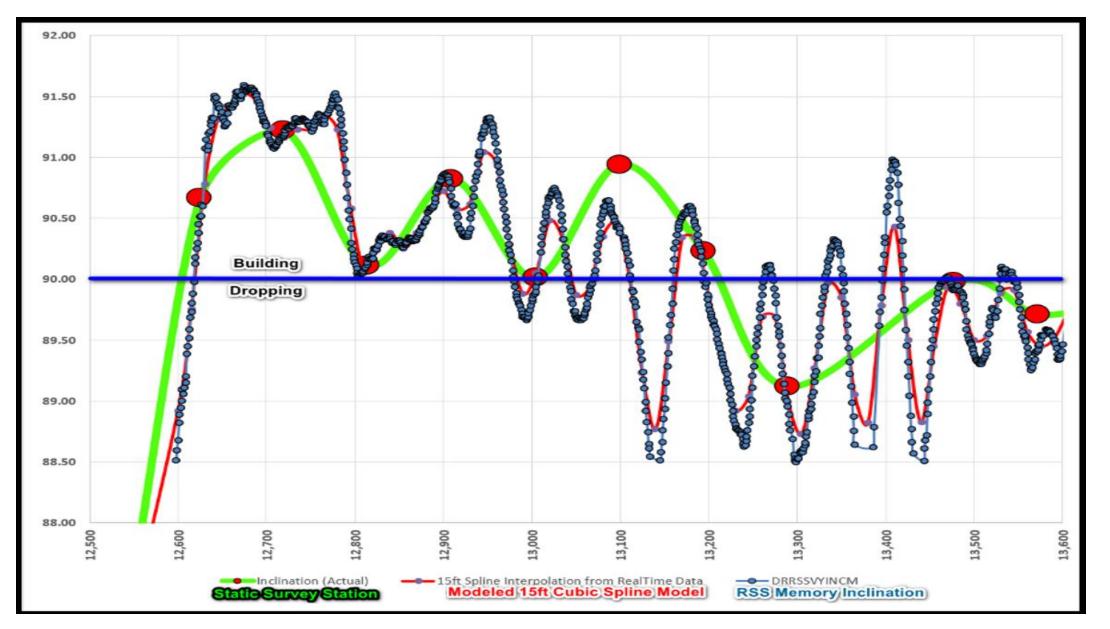


Lateral Undulation Period - TVD Accuracy

Pad 1 Well A

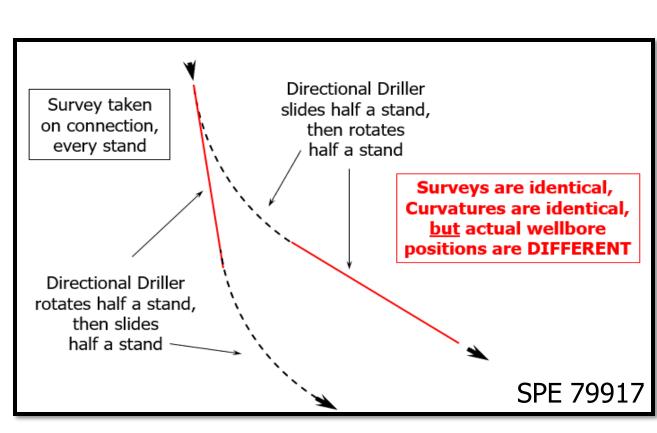

IADC/SPE-189697-MS

31


SPE DISTINGUISHED LECTURER^{**}

Directional Drilling Key Performance Indicators

Lateral Undulation Period – RSS Example

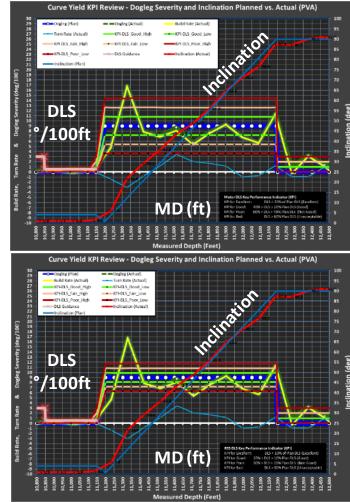


Slide / Rotate Effect – Curve TVD Accuracy

Starting Survey = 10,000 ft MD Inclination 30° & Azimuth 45°

- Case A: Slide 30 ft then Rotate 70 ft @ 10°/100'
- Case B: Rotate 70 ft then Slide 30 ft @ 10°/100' Final Inclination 40° & Final Azimuth 45°
- Case A: Survey at 10,030' & at 10,100'
- DLS 16.7°/100 ft & TVD 9,082.6 ft
- Case B: Survey at 10,070' & at 10,100'
- DLS 16.67°/100 ft & TVD 9,085.9 ft
- Case C: Survey only at 10,100'
- DLS 5°/100 ft & TVD 9,084 ft

Case A vs. Case B have a TVD difference 3.29 ft over only 100 ft of MD (1-Stand)


Directional Drilling Key Performance Indicators

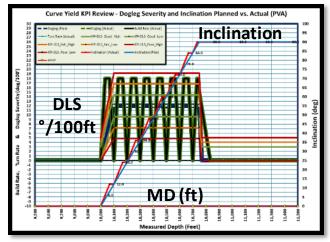
Directional Drilling Dogleg Severity Control Key Performance Indicators

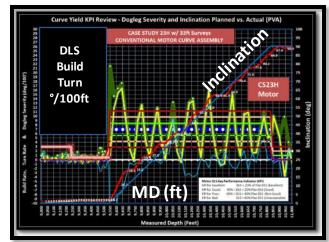
Directional Tools & Hole Section Type	Excellent	Good	Not-Good	Unacceptable RCRA Required	
Vertical Intervals	DLS <u><</u> 2	2 < DLS <u><</u> 3	3 < DLS ≤ 4	4 < DLS	
Tangent Intervals	DLS≤2	2 < DLS <u><</u> 3	3 < DLS ≤ 4	4 < DLS	
Lateral Intervals	DL\$ <u><</u> 2	2 < DLS <u><</u> 3	2 < DLS ≤ 3 3 < DLS ≤ 4		
Directional Motor Steering Interval	DLS < +/- 20% of Planned DLS	Between 20-40% of Planned DLS	Between 40-60% of Planned DLS	DLS > +/- 60% of Planned DLS	
Directional RSS Steering Interval	DLS < +/- 10% of Planned DLS	Between 10-20% of Planned DLS	Between 20-30% of Planned DLS	DLS < +/- 30% of Planned DLS	

Offset Operator Motor Curve

Motor Curve KPI Chart 20-40-60%

RSS Curve KPI Chart 10-20-30%

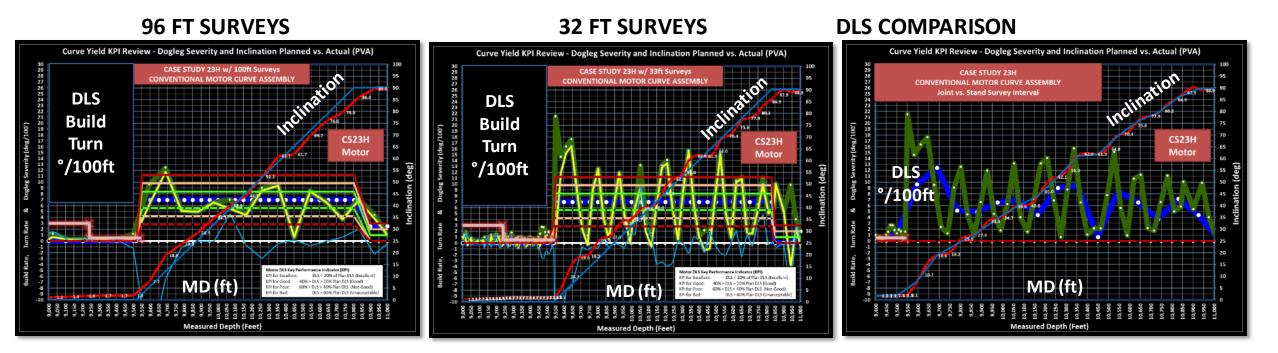

Slide / Rotate Effect – Curve TVD Accuracy


Case A: Slide 33 ft, Rotate 33 ft and Slide 33 ft from 0° to 90° Inc.

MD	Inclination (Actual)	Azimuth (Actual)	Course Length	TVD	Vertical Section	+N / - S	+E / -W	Colosure Distance	@ AZM	Dogleg (Actual)	Build Rate (Actual)	Turn Rate (Actual)
0.00	0.00	45.00	***		0.00	0.00	0.00	0.00		0.00	***	***
10,000.00	0.00	45.00		10000.00	0.00	0.00	0.00	0.00	45.00	0.00	0.00	0.00
10,033.33	6.00	45.00	33.33	10033.27	1.26	1.23	1.23	1.75	45.00	18.00	18.00	0.00
10,066.67	12.00	45.00	33.33	10066.18	5.03	4.92	4.92	6.96	45.00	18.00	18.00	0.00
10,100.00	12.00	45.00	33.33	10098.78	10.05	9.82	9.82	13.89	45.00	0.00	0.00	0.00
10,133.33	18.00	45.00	33.33	10130.97	16.29	15.92	15.92	22.51	45.00	18.00	18.00	0.00
10,166.67	24.00	45.00	33.33	10162.07	24.92	24.36	24.36	34.45	45.00	18.00	18.00	0.00
10,200.00	24.00	45.00	33.33	10192.52	34.73	33.95	33.95	48.01	45.00	0.00	0.00	0.00
10,233.32	30.00	45.00	33.33	2222.21	45.67	64	44.64	€ .13	\$5.00	18.00	18.00	0.00
10,26/ 66	36.00	45.00	33.33	19250-15	58,80	57.47	57-47	٤.28	45.00	18-00	19-00	0.00
10,30 .00	36.	45.00	33.33	27 12	7. 98		71.	1 0.87	\$5.00	J.00	0.0	0.00
10,33 83	42.00	45.00	33.33)30: 01	8 15	£ 1.1	86.:)	1 1.84	4 .0(.8.00	18.00	0.00
10,366.6	48.	45.00	33.33	J32C.57	105	1_2.81	1021	40 الما 1	1 5.00	1 18.00		0.00
10,400.00	48.00	45.00	33.33	10348.87	123.11	120.33	120.33	170.17	45.00	0.00	0.00	0.00
10,433.33	54.00	45.00	33.33	10369.84	141.84	138.64	138.64	196.06	45.00	18.00	18.00	0.00
10,466.66	60.00	45.00	33.33	10387.99	162.06	158.40	158.40	224.01	45.00	18.00	18.00	0.00
10,500.00	60.00	45.00	33.33	10404.66	182.94	178.81	178.81	252.87	45.00	0.00	0.00	0.00
10,533.33	66.00	45.00	33.33	10419.78	204.42	199.80	199.80	282.56	45.00	18.00	18.00	0.00
10,566.66	72.00	45.00	33.33	10431.72	226.92	221.79	221.79	313.67	45.00	18.00	18.00	0.00
10,599.99	72.00	45.00	33.33	10442.02	249.86	244.21	244.21	345.37	45.00	0.00	0.00	0.00
10,633.33	78.00	45.00	33.33	10450.64	273.14	266.97	266.97	377.55	45.00	18.00	18.00	0.00
10,666.66	84.00	45.00	33.33	10455.86	296.94	290.24	290.24	410.46	45.00	18.00	18.00	0.00
10,699.99	84.00	45.00	33.33	10459.34	320.93	313.68	313.68	443.61	45.00	0.00	0.00	0.00
10,733.33	90.00	45.00	33.33	10461.08	345.00	337.20	337.20	476.88	45.00	18.00	18.00	0.00

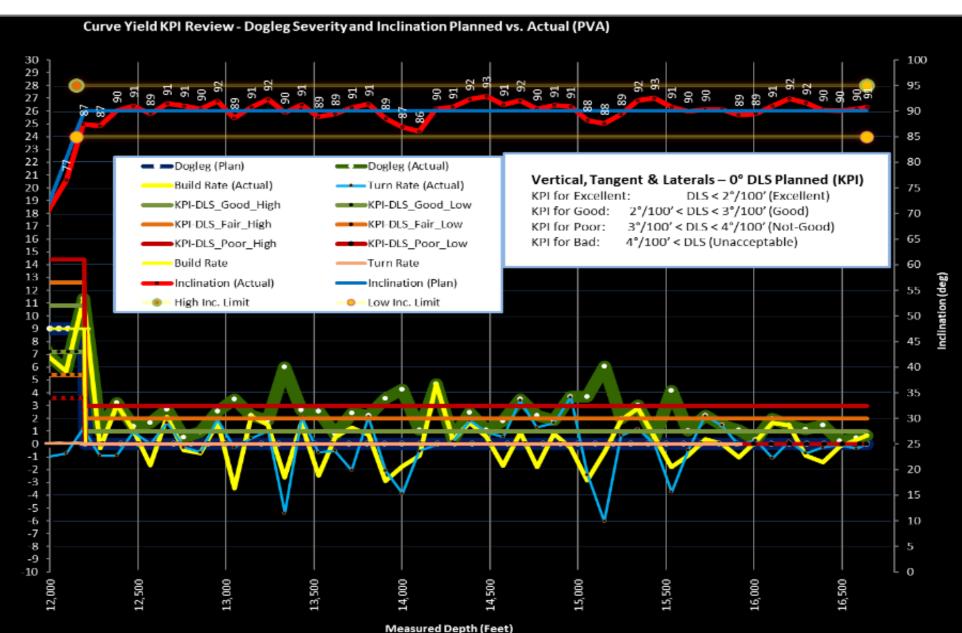
SIMULATED EXAMPLE

ACTUAL EXAMPLE



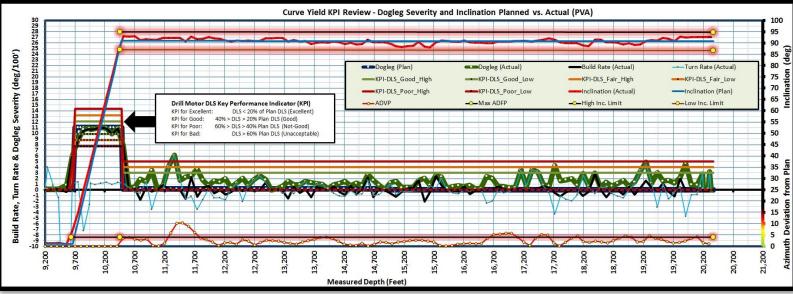
Case B: Survey Every 100 ft from 0° to 90° Inc. (16 ft TVD Delta)

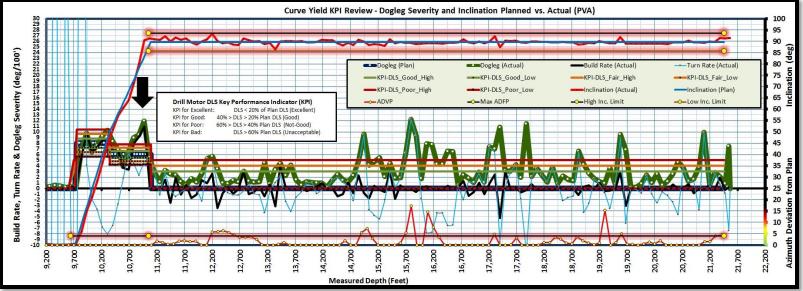
	MD (Plan)	Inclination (Plan)	Azimuth (Plan)	Course Length	TVD	Vertical Section	+N / - S	+E / -W	Closure	@ AZM	Dogleg (Plan)	Build Rate	Turn Rate
	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00	***	****
T	10,000.00	0.00	45.00	10000.00	10_0.00		0	0.00	.00		0.00	0.00	0.45
1	10,100.0	00	5.00	100.00	10 79.57	7.55	7 38		: .43	45.0			2.00
1	10,200.	00	.00	100.00	10 94.5	9. 6	2: 19	29.1	428	5.0	2.00		0.00
1	10,300.0	3# 10	45.00	.00.00	10 30.6	65. 114.29	6 48	64.4	919		2.00	2.00	0.00
1	10,400.00	48.00	45.00	100.00	10554.85	114.29	111.71	111.74	157.98	45.00	12.00	12.00	0.00
1	10,500.00	60.00	45.00	100.00	10413.50	172.71	168.81	168.81	238.73	45.00	12.00	12.00	0.00
1	10,600.00	72.00	45.00	100.00	10454.10	238.68	233.29	233.29	329.92	45.00	12.00	12.00	0.00
	10,700.00	84.00	45.00	100.00	10474.85	309.32	302.33	302.33	427.56	45.00	12.00	12.00	0.00
	10,750.00	90.00	45.00	50.00	10477.46	345.42	337.62	337.62	477.46	45.00	12.00	12.00	0.00


Case Study - Steerable Motor Curve

- Survey Frequency is Important for Medium Radius Curves
- If slide % is less, consider surveying twice a stand or every joint
- When sliding 90 to 100%; survey is less prone to landing TVD error

Lateral Tortuosity KPI – Case Study




Lateral DLS Build & Turn Rate KPI Chart With Inclination +/- Allowable Deviation from Plan

Surface to TD DLS KPI Chart with Artificial Lift DLS Guidance for Surface & Intermediate

Case Study – RSS Low Tortuosity

Case Study – RSS High Tortuosity

Curve Lateral Tortuosity KPI RSS Examples

Key Takeaways

- As demonstrated in these case studies, Safe Separation collision avoidance methods are designed to safely separate wellbores while also improving wellbore position accuracy.
- The survey interval should be considered during both the drilling planning and execution phases.
- Key performance indicators aid in achieving the objectives and expectations of directional wells.
- Wellbore Surveying and Positioning Practices
 - Provides a primary source of technical information for all subsurface borehole construction applications.
 - Contributes to the modernization of the wellbore construction industry by promoting safe separation procedures.
 - All participants in wellbore construction should support the collaborative effort of a committed group of industry volunteers. The desired outcome is industry-wide adoption.

See the WPTS for more information: https://connect.spe.org/wellborepositioning

Your Feedback is Important

Visit SPE.org/dl

Society of Petroleum Engineers

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl