59th General Meeting 17th & 18th of April 2024 Glasgow

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Methods for Evaluation of Wellbore Collision Probability in Critical Close-Proximity Regions

Jon Bang, Gyrodata/SLB; Darren Aklestad, SLB

Paper SPE-217728-MS, originally presented at IADC/SPE International Drilling Conference and Exhibition; Galveston, TX, USA.

Contents

- Background
 - Separation Factor versus Probability
 - Critical region
 - Scope of study
- Numeric example
 - Case
 - Results
- Conclusions

5–7 March 2024 Galveston Island Convention Center, Galveston, Texas, USA

Background

Background: Separation factor (SF)

- SF is the commonly used parameter for monitoring collision risk between wells.
- SF = Ratio of <u>distance</u> D_0 and the <u>uncertainty on the distance</u> $k\sigma_s$

$$SF = \frac{D_0 - (R_{ref} + R_{offs} + S_m)}{k \sqrt{\sigma_s^2 + \sigma_{pa}^2}}$$

SPE-WPTS recommended rule (k=3.5) for HSE-risk wells (SPE-187037-PA)

- Many definitions and flavours (definition of σ_s ; choice of k; modifying parameters)
 - From negligible to profound differences (SPE-200475-PA).
 - Possible misunderstandings in communication.

Background (continued)

- SF is used to monitor safe distance (SF >= 1); determine when to apply cautionary actions (SF approaching 1); determine when to stop drilling / change plans (SF = 1)
 - What do these numbers mean with respect to risk of collision?
 - Does an SF value imply the same near surface as downhole?
- Common approach: first find point pair, then apply uncertainties
 - May miss most crucial point pair => underestimating the risk.
 - SF is a 1D parameter => limitations with respect to complex well geometries.
- Still, collisions happen relatively infrequently (SPE-184730-PA)
 - Is SF unnecessarily conservative?

Critical close-proximity regions

- Tentative definition: 'The sections of both wellbores where special actions are required to ensure safe drilling'.
 - 'Close-proximity' depends on both geometric distance and position uncertainty.
 - Define by specific SF value?
- High accuracy needed: Interpolation
 - More computations.
 - SF still possible.
- Alternative: Probability
 - More fundamental parameter than SF.
 - Unambiguous definition and interpretation: P = 0.001 <=> 1 event per 1000 cases.
 - Flexible (any pdf; any well geometries; any desired interval in both wells) (SPE-184644-PA).

Probability: $P(within Vol) = \iiint_{Vol} pdf dV$

Same parameters D_0 , σ_s , etc. as in SF formula, but different approach => can only expect qualitative correspondence

Scope of study: - Compare SF and P_{DH} for critical regions - P_{DH} calculation options

- Most accurate P_{DH} by: ٠
 - High-resolution (interpolated) data
 - Actual EOU_{comb}; varying along both wells

```
P<sub>DH</sub> option 1: Use of constant EOU<sub>comb</sub>:
        Accuracy?
```


P_{DH} option 2: Calculate in Mahalanobis space: **Computation time?**

EOU_{comb} in Mahalanobis space (circle / sphere)

(Mathematically equivalent options)

5–7 March 2024 Galveston Island Convention Center, Galveston, Texas, USA

Numeric example

Numeric example

- Synthetic but realistic wellbores; one curved
 - Nearly perpendicular; slightly anti-parallel.

Parallel: EOU_{comb} increases

Anti-parallel: EOU_{comb} more constant

- Surveyed by standard MWD and gyro tools.
- Normal pdfs; uncertainty correlations are neglected.
- Original survey intervals 30 m; interpolated to ~1 m.
- Relative position such that $SF > \sim 1$ (k = 3.5).

5–7 March 2024 Galveston Island Convention Center, Galveston, Texas, USA

Conclusions

Conclusions (1): Comparison of SF versus P_{DH} .

- Various scenarios require various approaches.
 - Trade-off between accuracy and computational efficiency.
- P_{DH} is well suited for critical close-proximity regions:
 - Fundamental definition and interpretation.
 - Accurate results on high-resolution (interpolated) data.
 - Flexible: Any well geometry / pdf shape / analysis interval.
- SF is well suited for safe-distance 'screening':
 - More efficient evaluation than detailed P_{DH} calculation.
 - Useful for defining critical region onset.

Conclusions (2): P_{DH} options in critical close-proximity regions

- Accuracy of results is important.
 - High accuracy / high resolution obtained by interpolation along MD.
 - P_{DH} recommended.
- Constant EOU_{comb} cannot be recommended.
 - Difficult to select 'representative' pair of EOUs from *a priori* (low resolution) data.
 - Using the two largest EOUs will always be conservative; however, accuracy may be an issue.
- P_{DH} evaluation in physical space versus Mahalanobis space:
 - No significant difference in computation time (NB: limited case study).

Conclusions (3): Further work.

- Define transition from 'safe' distance (use SF) to critical region (use P_{DH}).
 - SF-based criterion.
- Accuracy depends crucially on pdf model.
 - Distances of typically 3-4 σ : Using proper pdf (especially tails) is important.

5–7 March 2024 Galveston Island Convention Center, Galveston, Texas, USA

Thank you for your attention

Thanks to Gyrodata and SLB for the opportunity to develop and publish this work.

5–7 March 2024 Galveston Island Convention Center, Galveston, Texas, USA