SPE-184644-MS Quantification of Wellbore Collision Probability by Novel Analytic Methods

First presented at:

SPE/IADC Drilling Conference and Exhibition, 14-16 March 2017, The Hague, The Netherlands

Jon Bang, Gyrodata

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

Speaker Information

- Jon Bang
- Development Engineer
- March 17, 2017
- Gyrodata

2

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

CONTENTS

Background

Basic model; probability equation

Direct hit (DH) probability: method + results

Unintentional crossing (UC) probability: method + results

Conclusions

45th General Meeting March 17th, 2017 The Hague, The Netherlands

BACKGROUND

Wellbore collision: unplanned and negative event

- direct hit (DH)
- unintentional crossing (UC)

Cause (here): uncertainty in wellbore positions

What is acceptable probability?

depends on consequences (HSE / non-HSE)

Existing analysis methods:

- approximate; suited for simple geometries only
- complex, time consuming

45th General Meeting March 17th, 2017 The Hague, The Netherlands

BASIC MODEL

Offset well = existing Reference well = planned, or being drilled

Standard position (N, E, V) and uncertainty (Cov) data; passed QC

Can interpolate all NEV and Cov data at any desirable MD

Uncertainties are combined (=> relative uncertainty) and assigned to the reference well

Wellbore dimensions are combined and assigned to the offset well

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

PROBABILITY

Unintentional crossing (UC)

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Direct hit (DH)

Wellbore Positioning Technical Section

DIRECT HIT PROBABILITY

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Slide 7

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

DIRECT HIT PROBABILITY: METHOD

45th General Meeting March 17th, 2017 The Hague, The Netherlands

- Taylor expansion
- Symmetric segment
- Integration
- Contributing terms:

$$P_j$$
 =
 # terms
 contributing

 P_0
 1
 1

 $+ P_1$
 3
 0

 $+ P_2$
 9
 3

 $+ P_3$
 27
 0

 $+ ...$
 a lot
 neglected

$$P_{j} \approx f_{X} f_{Y} f_{Z} (\pi R_{1} R_{2} L) + [f_{X}" f_{Y} f_{Z} + f_{X} f_{Y}" f_{Z} + f_{X} f_{Y} f_{Z}"] (\pi R_{1}^{4} L / 8)$$

where: $R_1 = R_0 + R_r$, $R_2 = R_0 + \cos(\beta_j)R_r$, $L = sqrt(3)(R_1 + R_2)$

Any reasonable pdf distribution
 Any segment orientation Ample

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

terms

DIRECT HIT PROBABILITY: RESULTS

45th General Meeting March 17th, 2017 The Hague, The Netherlands

MD (m) in ref. well

Example: 220 x 1500 points Calculation (not optimized) and post-processing: < 45

Wellbore Positioning Technical Section

UNINTENTIONAL CROSSING PROBABILITY

45th General Meeting March 17th, 2017 The Hague, The Netherlands

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

WHAT BOUNDARY SHOULD BE USED?

Closest approach: minimum spatial distance

- 1. The closest approach method may miss high-probability points.
- 2. The «fence» follows the wellpath better than does the «wall»

45th General Meeting March 17th, 2017 The Hague, The Netherlands

UC PROBABILITY: GEOMETRY AND COORDINATE SYSTEM

(non-circular ellipse is sampled in polar coordinates)

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Slide 12

UC PROBABILITY: RESULTS

(2D cases – boundaries where exact solutions exist)

k	P _{UC} (%)	Exact P _{UC} (%)
2.0	2.2750	2.2747
2.5	0.6210	0.6209
3.0	0.1350	0.1350
3.5	0.0233	0.0233
4.0	0.0032	0.0032

k	P _{UC} (%)	Exact P _{uc} (%)			
2.0	6.7668	6.7668			
2.5	2.1969	2.1969			
3.0	0.5555	0.5555			
3.5	0.1094	0.1094			
4.0	0.0168	0.0168			

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

Slide 14

RECOMMENDATIONS

AND

CONCLUSIONS

45th General Meeting March 17th, 2017 The Hague, The Netherlands

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

PRINCIPLES FOR ANTI-COLLISION PROBABILITY ANALYSIS

- 1. Probability = integral of pdf over specific volume
- 2. DH and UC scenarios involve substantially different volumes:
 - generally incompatible analysis methods
 - generally incompatible probability results
- 3. The closest approach method may miss points of highest probability:
 - need to analyze probability at many points / in many directions

45th General Meeting March 17th, 2017 The Hague, The Netherlands

CONCLUSIONS

Desirable features of a clearance scan method 1 - 5: «Collision Avoidance Calculations – Current Common Practice», ISCWSA (SPE-WPTS) 2013		DH methods MC New		UC methods Existing New	
1. Based on position uncertainty	Yes	Yes	Closest approach	Yes	
2. Output related to collision probability	Yes	Yes	(Some)	Yes	
3. Completely valid; or conservative results	Yes	Yes	Approx.	Yes	
4. All relative wellpath geometries	Yes	Yes	Straight	Yes	
5. Output easily understood by user	Yes	Yes	(Some)	Yes	
Probability distribution	Any	Any	Normal	Normal	
P(DH) or P(UC) when drilling next interval of reference well	Yes	Yes	No	No	
Analytic, compatible with existing software, fast calculation	No	Yes	Yes	Yes	
45th General Meeting					

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

Acknowledgements

John Weston, Gyrodata Harry Wilson, Baker Hughes Andrew Brooks, former PathFinder Schlumberger Erik Nyrnes, Statoil Adrián Ledroz, Gyrodata

Gyrodata Inc.

SPE-WPTS (ISCWSA); Anti-collision subgroup

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

Thank You

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

Slide 18

Slide 19

FOLLOWING SLIDES:

ADDITIONAL DETAILS ANSWERS TO (SOME) QUESTIONS

45th General Meeting March 17th, 2017 The Hague, The Netherlands

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

P_{UC} WHEN DRILLING AN INTERVAL

Re-orient the boundary?

- or not?

drilling direction

45th General Meeting March 17th, 2017 The Hague, The Netherlands

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

SEPARATION FACTOR (SF)

Criterion to determine how close two wells may come to each other:

- applies basically to UC scenarios, not DH
- compares surveyed distance to a critical distance

Various definitions are currently used:

- some account for uncertainty / probability, some do not
- all build on closest approach assumption (in some form)
- ok for simple geometries, less good for complex geometries

Need for a re-evaluation of SF:

- non-ambiguous definition
- unique relation to probability
- validity for complex geometries

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

ANGULAR PROBABILITY (1D Mahalanobis transform)

$P(\alpha) = P(\alpha') = \alpha' / 2\pi = \arctan[(\sigma_1/\sigma_2) \tan(|\alpha|)] / 2\pi \qquad (-\pi/2)$

 $(-\pi/2 < \alpha < \pi/2)$

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

CROSSING «ABOVE» OR «BELOW» THE OFFSET WELL

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

Slide 24

RELATIVE UNCERTAINTY (Position differences)

Covariance matrices:

$$\Sigma_{\rm c} = \Sigma_1 + \Sigma_2$$

1D equivalent:

$$\sigma_{c}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} - 2\rho_{12}\sigma_{1}\sigma_{2}$$

Independent (most common assumption): $\rho_{12} = 0$ $\sigma_{c}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2}$

Positive (full) correlation: Negative (full) correlation:

45th General Meeting March 17th, 2017 The Hague, The Netherlands

$$\sigma_{12} = +1$$
 $\sigma_c^2 = (\sigma_1 - \sigma_2)^2$
 $\sigma_{12} = -1$ $\sigma_c^2 = (\sigma_1 + \sigma_2)^2$

 $\sigma_2)^2$

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

CORRELATION OR NOT?

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Slide 25

THE CROSS SECTION OF THE «COMBINED» WELL IS ELLIPTIC

45th General Meeting March 17th, 2017 The Hague, The Netherlands

Wellbore Positioning Technical Section

DOES A PERFECT BOUNDARY EXIST?

1. The closest approach method may miss high-probability points.

2. The «fence» follows the wellpath better than does the «wall» => more accurate boundary.

45th General Meeting March 17th, 2017 The Hague, The Netherlands

